Bulky PNP Ligands Blocking Metal-Ligand Cooperation Allow for Isolation of Ru(0), and Lead to Catalytically Active Ru Complexes in Acceptorless Alcohol Dehydrogenation

20 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We synthesized two 4Me-PNP ligands which block metal-ligand cooperation (MLC) with the Ru center and compared their Ru complex chemistry to their two traditional analogues used in acceptorless alcohol dehydrogenation catalysis. The corresponding 4Me-PNP complexes, which do not undergo dearomatization upon addition of base, allowed us to obtain rare, albeit unstable, 16 electron mono CO Ru(0) complexes. Reactivity with CO and H2 allows for stabilization and extensive characterization of bis CO Ru(0) 18 electron and Ru(II) cis and trans dihydride species that were also shown to be capable of C(sp2)-H activation. Reactivity and catalysis are contrasted to non-methylated Ru(II) species, showing that an MLC pathway is not necessary, with dramatic differences in outcomes during catalysis between iPr and tBu PNP complexes within each of the 4Me and non-methylated backbone PNP series being observed. Unusual intermediates are characterized in one of the new and one of the traditional complexes, and a common catalysis deactivation pathway was identified.

Keywords

Ruthenium
Metal Ligand Cooperation
alcohol dehydrogenation
Acceptorless Dehydrogenation
Catalysis

Supplementary materials

Title
Description
Actions
Title
SupportingInformation
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.