Arylazo-1,2,3-Triazoles: “Clicked” Photoswitches for Versatile Functionalization and Electronic Decoupling

20 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The development of light-responsive chemical systems often relies on the rational design and suitable incorporation of molecular photoswitches such as azobenzenes. Linking a photoswitch core with another π-conjugated molecular entity may give rise to intramolecular electronic coupling, which can dramatically impair the photoswitch function. Decoupling strategies have been developed based on additionally inserting a linker that can disrupt the through-bond electronic communication. Here we show that 1,2,3-triazole—a commonly used decoupling spacer—can be directly merged into the azoswitch core to construct a class of “self-decoupling” azoswitches arylazo-1,2,3-triazoles. These heteroaryl azoswitches are easily accessed and readily functionalized using click chemistry. Their photoswitch property can be regulated by structural modification, enabling (near-)quantitative E-Z photoconversion and widely tunable Z-isomer thermal half-lives from days to years. Combined experimental and theoretical results demonstrate that the electronic structure of the photoswitch core is not substantially affected by various substituents attached to the 1,2,3-triazole unit, benefitting from its cross-conjugated nature. The combination of clickable synthesis, tunable photoswitch property and self-decoupling ability, makes arylazo-1,2,3-triazoles intriguing molecular tools in designing photo-responsive systems with desired performance.

Keywords

photoswitch
azobenzene
triazole
click chemistry
electronic decoupling
Heteroaryl azoswitch

Supplementary materials

Title
Description
Actions
Title
supporting information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.
Comment number 1, Zhao-Yang Zhang: Oct 15, 2023, 06:20

Update: final version published in J. Am. Chem. Soc. 2021, 143, 36, 14502–14510. https://pubs.acs.org/doi/full/10.1021/jacs.1c08704