The Temperature Dependence of Fundamental Photophysical Properties of [Eu(MeOH-d4)9]3+ Solvates and [Eu.DOTA(MeOH-d4)]- Complexes

05 May 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The trivalent lanthanide ions show optical transitions between energy levels within the 4f shell. All these transitions are formally forbidden according to the quantum mechanical selection rules used in molecular photophysics. Nevertheless, highly luminescent complexes can be achieved, and terbium(iii) and europium(iii) ions are particularly efficient emitters. This report started when an apparent lack of data in the literature led us to revisit the fundamental photophysics of europium(iii). The photophysical properties of two complexes – [Eu.DOTA(MeOH-d4)]- and [Eu(MeOH-d4)9]3+ – were investigated in deuterated methanol at five different temperatures. Absorption spectra showed decreased absorption cross sections as the temperature was increased. Luminescence spectra and time-resolved emission decay profiles showed a decrease in intensity and lifetime as a temperature was increased. Having corrected the emission spectra for the actual number of absorbed photons and differences in non-radiative pathways, the relative emission probability was revealed. These were found to increase with increasing temperature. The transition probability for luminescence was shown to increase with temperature, while the transition probability for light absorption decreased. The changes in transition probabilities were correlated to a change in the symmetry of the absorber or emitter, with an average increase in symmetry lowering absorption cross section and access to more asymmetric structures increasing the emission rate constant. Determining luminescence quantum yields and the Einstein coefficient for spontaneous emission allowed us to conclude that lowering symmetry increases both. Further, it was found that collisional self-quenching is an issue for lanthanide luminescence, when high concentrations are used. Finally, detailed analysis revealed results that show the so-called ‘Werts’ method’ for calculating radiative lifetimes and intrinsic quantum yields are based on assumption that does not hold for the two systems investigated here. We conclude that we are lacking a good theoretical description of the intraconfigurational f-f transition, and that there are still aspects of fundamental lanthanide photophysics to be explored.

Keywords

Lathanide Coordination Chemistry, Solution structure, Molecular Photophysics, Lanthanide Luminescence

Supplementary materials

Title
Description
Actions
Title
EuThermal SI v2
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.