Abstract
Hydroxide ion is a common electrolyte when electrode reactions take place in alkaline media. In the case of oxygen reduction reaction on Pt(111), we demonstrate by ab initio molecular dynamics calculations, that the desorption of hydroxyl (OH*) from the electrode surface to form a solvated OH− is a cross sphere process, with the reactant OH* in the inner sphere and the product OH− directly generated in the aqueous outer sphere. Such a mechanism is distinct from the typical inner sphere and outer sphere reactions. It is dictated by the strong hydrogen bonding interactions between a hydroxide ion and water molecules and facilitated by proton transfer through solvation layers. It should play a significant role whenever OH* desorption, or its reverse, OH− adsorption, is involved in an electrochemical reaction
Supplementary materials
Title
SupplementMat
Description
Actions