A Self-Immolative Molecular Beacon for Amplified Nucleic Acid Detection

12 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Fluorogenic hybridization probes allow the detection of RNA and DNA sequences in homogeneous solution. Typically, one target molecule is activating the fluorescence of a single probe molecule. This limits the sensitivity of nucleic acid detection. Herein, we report a self-immolative Molecular Beacon (iMB), which escapes the one-target-one-probe dogma. The iMB probe includes a photoreductively cleavable N-alkylpicolinium (NAP) linkage within the loop region. A fluorophore at the 5'-end serves, on the one hand, as a reporter group and, on the other hand, as a photosensitizer of a NAP-linker cleavage reaction. In the absence of a target, the iMB adopts a hairpin shape. Quencher proups prevent photo-induced cleavage. The iMB opens upon hybridization with target, and both fluorescent emission as well as photo-inductive cleavage of the NAP-linker can occur. In contrast to previous chemical amplification probes, iMBs are unimolecular. Cleavage leads to products that have lower target affinity than the probes before reaction. Aided by catalysis, the method allowed the detection of 5 pM RNA target within 100 min.

Keywords

Oligonucleotides Conjugated
fluorescence assay
RNA Detection Nucleic acids detection
photo-reactive

Supplementary materials

Title
Description
Actions
Title
iMB Roth Seitz SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.