Surface Pitting on Nanofibrous Matrix as an Ultra- Sensitive Indicator for Enzymatic Hydrolysis of Crystalline Cellulose

11 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Assaying enzymatic degradation of the water-insoluble substrate such as cellulose and synthetic polymers has remained technically challenging, primarily because only the surface of the substrate is accessible to the enzymes and the reaction proceeds very slowly compared with those of water-soluble substrates. Here we show an ultra-sensitive and semi-quantitative assay for enzymatic hydrolysis of cellulose. By combining nanofibrous matrices with piezo-driven inkjet printing and optical profilometry, enzymatic hydrolysis of less than 1 nanogram of crystalline cellulose was successfully quantified. Unprecedented genetic diversity of cellulase was revealed when the same principle was applied for elucidating microbial degradation of cellulose in the deep sea. This work demonstrates that truly interdisciplinary efforts, encompassing diverse disciplines from nanotechnology to microbiology, are crucial to address scientific and technological problems towards sustainability.

Keywords

Nanofibrous Cellulose
Cellulase
Deep Sea

Supplementary materials

Title
Description
Actions
Title
figures
Description
Actions
Title
supplementary information v22
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.