Interaction of CO with Gold in an Electrochemical Environment

04 May 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a joint theoretical-experimental study of CO coverage and facet selectivity on Au and under electrochemical conditions. With in situ attenuated total reflection surface enhanced IR spectroscopy (ATR-SEIRAS), we investigate the CO binding in an electrochemical environment. At 0.2V vs. SHE, we detect a CO band that disappears upon facet selective partial Pb underpotential deposition, suggesting that Pb blocks certain CO adsorption sites. With Pb underpotential deposition on single crystals and theoretical surface Pourbaix analysis, we eliminate (111) terraces as a possible adsorption site of CO. Ab initio molecular dynamics simulations of explicit water at the Au surface, shows the adsorption of CO on (211) steps to be significantly weakened relative to the (100) terrace due to competitive water adsorption. This result suggests that CO is more likely to bind to the (100) terrace than (211) steps in an electrochemical environment, even though Au steps in gas phase conditions bind CO* more strongly. The competition between water and adsorption can result in different binding sites for CO* on Au in gas phase and electrochemical environments.

@font-face {font-family:"MS Mincho"; panose-1:2 2 6 9 4 2 5 8 3 4; mso-font-alt:"MS 明朝"; mso-font-charset:128; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:-536870145 1791491579 134217746 0 131231 0;}@font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536870145 1107305727 0 0 415 0;}@font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-469750017 -1073732485 9 0 511 0;}@font-face {font-family:"\@MS Mincho"; panose-1:2 2 6 9 4 2 5 8 3 4; mso-font-charset:128; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:-536870145 1791491579 134217746 0 131231 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0cm; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;}div.WordSection1 {page:WordSection1;}

Keywords

Gold
CO
Electrocatalysis
ATR-SEIRAS
Electrochemical Interface
ab-initio MD

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.