Towards Reproducible Enzyme Modeling with Isothermal Titration Calorimetry

10 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

An experimental workflow to provide detailed information of the molecular mechanisms of enzymes is described. This workflow will help in the application of enzymes in technical processes by providing crucial parameters needed to plan, model and implement biocatalytic processes more efficiently. These parameters are homogeneity of the enzyme sample (HES), kinetic and thermodynamic parameters of enzyme kinetics and binding of reactants to enzymes. The techniques used to measure these properties are dynamic light scattering (DLS), UV-Vis spectrophotometry and isothermal titration calorimetry (ITC) respectively. The workflow is standardized by the use of SOPs and python-scripted data analysis.

We have used the NADPH-dependent alcohol dehydrogenase Gre2p as a challenging enzyme to demonstrate the power of this workflow. Our work highlights the utility for combined binding and kinetic studies for such complex multi-substrate reactions and the importance of sample quality control during experiments.

Keywords

(S)-stereoselective ketoreductase
kinetic model
FAIR/F.A.I.R.
reproducibility
quality control
dynamic light scattering
UV-Vis spectrophotometry

Supplementary materials

Title
Description
Actions
Title
Ott Rabe Niemeyer GYGLI 2021 SI
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.