Coherent Acoustic Interferometry During the Photo-Driven Oxygen Evolution Reaction Associates Strain Fields with the Reactive Oxygen Intermediate

07 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The oxygen evolution reaction (OER) from water requires the formation of meta-stable, reactive oxygen intermediates to enable oxygen-oxygen bond formation. On the other hand, such reactive intermediates could also structurally modify the catalyst. A descriptor for the overall catalytic activity, the first electron and proton transfer OER intermediate from water, (M-OH*), has been associated with significant distortions of the metal-oxygen bonds upon charge-trapping. Time-resolved spectroscopy of in-situ, photo-driven OER on transition metal oxide surfaces has characterized M-OH* for the charge trapped and the symmetry of the lattice distortions by optical and vibrational transitions, respectively, but had yet to detect an interfacial strain field arising from a surface coverage M-OH*. Here, we utilize picosecond, coherent acoustic interferometry to detect the uniaxial strain normal (100) to the SrTiO3/aqueous interface directly caused by Ti-OH*. The spectral analysis applies a fairly general methodology for detecting a combination of the spatial extent, magnitude, and generation time of the interfacial strain through the coherent oscillations’
phase. For lightly n-doped SrTiO3, we identify the strain generation time (1.31 ps), which occurs simultaneously with Ti-OH* formation, and a tensile strain of 0.06% (upper limit 0.6%). In addition to fully characterizing this intermediate across visible, mid-infrared, and now GHz-THz probes on SrTiO3, that strain fields occur with the creation of some M-OH* modifies design strategies for tuning material properties for catalytic activity and provides insight into photo-induced degradation so prevalent for OER. To that end, the work put forth here provides a unique methodology to characterize intermediate-induced interfacial strain across OER catalysts.

Keywords

Water Oxidation
Oxygen Evolution Reaction
Coherent Acoustic Phonons
Time-resolved optical spectroscopy

Supplementary materials

Title
Description
Actions
Title
Phonon paper v17 SI ChemRXiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.