Exact Solution of Kinetic Analysis for Thermally Activated Delayed Fluorescence Materials

30 April 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


The photophysical analysis of thermally activated delayed fluorescence (TADF) materials has become instrumental to providing insight into their stability and performance, which is not only relevant for organic light-emitting diodes (OLED), but also for other applications such as sensing, imaging and photocatalysis. Thus, a deeper understanding of the photophysics underpinning the TADF mechanism is required to push materials design further. Previously reported analyses in the literature of the kinetics of the various processes occurring in a TADF material rely on several a priori assumptions to estimate the rate constants for forward and reverse intersystem crossing (ISC and RISC, respectively). In this report, we demonstrate a method to determine these rate constants using a three-state model together with a steady-state approximation and, importantly, no additional assumptions. Further, we derive the exact rate equations, greatly facilitating a comparison of the TADF properties of structurally diverse emitters and providing a comprehensive understanding of the photophysics of these systems.


Kinetic Analysis
Three-state Analysis


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.