Exploiting the Interplay Between Bi-Modal Molecular Weight Distribution in Polystyrene and Humidity to Induce Self-Assembly of Biomimetic Micropillars/honeycomb Morphology in Thin Polymer Film

22 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Segregation of polymer chains of different molecular weights is a well-known process. For many years, it was assumed that this process occurs over long-time intervals. On the contrary, solvent evaporation during spin-coating is very fast. A traditional experimental approach of studying phase segregation of thin films composed of polymer blends with identical chemical compositions but different molecular weights, was focused on functionalization of chemical group or modification of end-group. In this study however, a different approach was proposed, in which polystyrene with a bimodal molecular weight distribution but no additional chemical modification was implemented in order to examine and analyze its phase segregation. By doing this, we have presented an easy, fast, effective and fully controlled method of obtaining biomimetic micropillar/honeycomb morphologies. In addition, the evaporation rate during spin-coating and the viscosity of a solution with a bimodal molecular weight distribution was described.

Keywords

polymer blends structures
phase segregation processes
honeycomb film morphology
micropillar
Self assembly
Thin Film
polystyrene surfaces

Supplementary materials

Title
Description
Actions
Title
Supplementary information styczen21
Description
Actions
Title
bimodal micropillars jan21
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.