The Impact of Ligand Field Symmetry on Molecular Qubit Coherence

05 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Developing quantum bits (qubits) exhibiting room temperature electron spin coherence is a key goal of molecular quantum information science. Here we develop a simple and powerful model for predicting relative T1 coherence times in transition metal complexes from dynamic ligand field principles. By considering the excited state origins of ground state spin-phonon coupling, we derive group theory selection rules governing which vibrational symmetries can induce decoherence. Thermal weighting of the coupling terms produces surprisingly good predictions of experimental T1 trends as a function of temperature and explains previously confounding features in spin-lattice relaxation data. We use this model to evaluate experimental relaxation rates across S = ½ transition metal qubit candidates with diverse structures, gaining new insights into the interplay between spin-phonon coupling and molecular symmetry. This methodology elucidates the specific vibrational modes giving rise to decoherence, suggesting symmetry-based design strategies and providing insight into the origin of room temperature coherence in transition metal complexes.

Keywords

qubit candidates
group theory
ligand field theory
spin-lattice relaxation rates
coherence
spin-phonon coupling

Supplementary materials

Title
Description
Actions
Title
T1 SI chemrxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.