Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force-Fields

05 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Force-field development has undergone a revolution in the past decade with the proliferation of quantum chemistry based parameterizations and the introduction of machine learning approximations of the atomistic potential energy surface. Nevertheless, transferable force-fields with broad coverage of organic chemical space remain necessary for applications in materials and chemical discovery where throughput, consistency, and computational cost are paramount. Here we introduce a force-field development framework called Topology Automated Force-Field Interactions (TAFFI) for developing transferable force-fields of varying complexity against an extensible database of quantum chemistry calculations. TAFFI formalizes the concept of atom typing and makes it the basis for generating systematic training data that maintains a one-to-one correspondence with force-field terms. This feature makes TAFFI arbitrarily extensible to new chemistries while maintaining internal consistency and transferability. As a demonstration of TAFFI, we have developed a fixed-charge force-field, TAFFI-gen, from scratch that includes coverage for common organic functional groups that is comparable to established transferable force-fields. The performance of TAFFI-gen was benchmarked against OPLS and GAFF for reproducing several experimental proper- ties of 87 organic liquids. The consistent performance of these force-fields, despite their distinct origins, validates the TAFFI framework while also providing evidence of the representability limitations of fixed-charge force-fields.

Keywords

force-fields
molecular dynamics

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.