Total Synthesis of (+)-Spiroindimicin A via Asymmetric Palladium-Catalyzed Spirocyclization

03 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The spiroindimicins are a unique class of chlorinated indole alkaloids characterized by three heteroaromatic rings structured around a congested spirocyclic stereocenter. Here, we report the first total synthesis of (+)-spiroindimicin A, which bears a challenging C-3’/C-5’’-linked spiroindolenine. We detail our initial efforts to effect a biomimetic oxidative spirocyclization from its proposed natural precursor, lynamicin D, and describe how these studies shaped our final abiotic 9-step solution to this complex alkaloid built around a key asymmetric Pd-catalyzed spirocyclization. Scalable access to spiroindimicins A, H, and their congeners has enabled discovery of their activity against several parasites relevant to human health, providing potential starting points for new therapeutics for the neglected tropical diseases leishmaniasis and African sleeping sickness.

Keywords

total synthesis
alkaloid
antiparasitic agent

Supplementary materials

Title
Description
Actions
Title
SPM SI Final Final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.