Focused Laser Spike Dewetting as a Rheology Method for Soft Matter Thin Films

23 April 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Focused laser spike (FLaSk) dewetting employs a localized heat source to create thermocapillary induced trench-ridge morphologies. By using a universal heating substrate to create a material independent thermal profile coupled with optical microscopy, we have studied the dewetted ridge feature for several distinct glassy thin films. The evolution of the ridge's radius over time can be modeled using stretched exponential functions to derive a maximum dewetted radius and a characteristic decay time. The characteristic decay time shows a super-Arrhenius behavior resembling viscosity change during the glass transition process. An effective viscosity is defined by balancing the thermocapillary Marangoni stress using the mean temperature in the melt pool, indicating clear signature of composition. In this way, we have demonstrated that FLaSk dewetting as a rheology
method can be employed for high-throughput analysis of glassy thin film materials at high temperature and shear.


Marangoni Flows
thermocapillary surface flow
laser dewetting
Soft Matter
Thin Film

Supplementary materials

Supporting Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.