Synthesis of Cardiotonic Steroids Oleandrigenin and Rhodexin B

28 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This article describes a concise synthesis of cardiotonic steroids oleandrigenin (7) and its subsequent elaboration into the natural product rhodexin B (2) from the readily available intermediate (8) that could be derived from the commercially available steroids testosterone or DHEA via 3 step sequences. These studies feature an expedient installation of the β16-oxidation based on β14-hydroxyl directed epoxidation and subsequent epoxide rearrangement. The following singlet oxygen oxidation of the C17 furan moiety provides access to oleandrigenin (7) in 12 steps (LLS) and 3.9% overall yield from 8. The synthetic oleandrigenin (7) was successfully glycosylated with L-rhamnopyranoside-based donor using Pd(II)-catalyst, and the subsequent deprotection under acidic conditions provided cytotoxic natural product rhodexin B (2) in 68% yield (2 steps).

Keywords

cardiotonic
steroid
synthesis
oleandrigenin
rhodexin B
testosterone
DHEA
epoxide rearrangement
glycosylation

Supplementary materials

Title
Description
Actions
Title
Final Supporting Information Spectra
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.