Implantation and Retrieval of Magnetic Nanobots for Treatment of Endodontic Re-Infection in Human Dentine

28 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

More than 10% of root canal treatments undergo failure worldwide due to remnant bacteria deep in the dentinal tubules located within the dentine tissue of human teeth. Owing to the complex and narrow geometry of the tubules, current techniques relying on passive diffusion of anti-bacterial agents are inadequate. Here, we present a new treatment method using actively maneuvered nanobots, which can be incorporated during standard root canal procedure. Our technique will enable dentists to execute procedures inside the dentine not yet possible by current state of the art. We demonstrate that magnetically driven nanobots can reach the depths of the tubules up to hundred times faster than current clinical practices. Subtle modifications of the magnetic drive allowed deep implantation of the nanobots isotopically distributed throughout the dentine, along with spatially controlled retrieval from selected areas. Finally, we demonstrate the integration of bactericidal therapeutic modality with the nanobots, thereby validating the tremendous potential of nanobots in dentistry, and nanomedicine in general.

Keywords

nanobots
dentine
endodontic reinfection
micromotors
root canal

Supplementary materials

Title
Description
Actions
Title
Archive
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.