Abstract
More than 10% of root canal treatments undergo failure worldwide due to remnant bacteria deep in the dentinal tubules located within the dentine tissue of human teeth. Owing to the complex and narrow geometry of the tubules, current techniques relying on passive diffusion of anti-bacterial agents are inadequate. Here, we present a new treatment method using actively maneuvered nanobots, which can be incorporated during standard root canal procedure. Our technique will enable dentists to execute procedures inside the dentine not yet possible by current state of the art. We demonstrate that magnetically driven nanobots can reach the depths of the tubules up to hundred times faster than current clinical practices. Subtle modifications of the magnetic drive allowed deep implantation of the nanobots isotopically distributed throughout the dentine, along with spatially controlled retrieval from selected areas. Finally, we demonstrate the integration of bactericidal therapeutic modality with the nanobots, thereby validating the tremendous potential of nanobots in dentistry, and nanomedicine in general.