A Fragment Diabatization Linear Vibronic Coupling Model for Quantum Dynamics of Multichromophoric Systems: Population of the Charge Transfer State in the Photoexcited Guanine Cytosine Pair

28 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We introduce a method (FrD-LVC) based on a fragment diabatization (FrD) for the parametrization of a Linear Vibronic Coupling (LVC) model suitable for studying the photophysics of multichromophore systems. In combination with effective quantum dynamics (QD) propagations with multilayer multiconfigurational time-dependent Hartree (ML-MCTDH), the FrD-LVC approach gives access to the study of the competition between intra-chromophore decays, like those at conical intersections, and inter-chromophore processes, like exciton localization/delocalization and the involvement of charge transfer (CT) states. We used FrD-LVC parametrized with TD-DFT calculations, adopting either CAM-B3LYP or ωB97X-D functionals, to study the ultrafast photoexcited QD of a Guanine-Cytosine (GC) hydrogen bonded pair, within a Watson-Crick arrangement, considering up to 12 coupled diabatic electronic states and the effect of all the 99 vibrational coordinates. The bright excited states localized on C and, especially, on G are predicted to be strongly coupled to the G->C CT state which is efficiently and quickly populated after an excitation to any of the four lowest energy bright local excited states. Our QD simulations show that more than 80% of the excited population on G and ~50% of that on C decays to this CT state in less than 50 fs. We investigate the role of vibronic effects in the population of the CT state and show it depends mainly on its large reorganization energy so that it can occur even when it is significantly less stable than the bright states in the Franck-Condon region. At the same time, we document that the formation of the GC pair almost suppresses the involvement of dark nπ* excited states in the photoactivated dynamics.

Keywords

quantum dynamics
DNA
excited state dynamics
td-dft
MCTDH
charge transfer
Guanine-cytosine (GC)
linear vibronic coupling
diabatisation
Multichromophore Arrays

Supplementary materials

Title
Description
Actions
Title
SI FrD-LVC
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.