Powerful Statistical Tests for Ordered Data

21 April 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The inference of models from one-dimensional ordered data subject to noise is a fundamental and ubiquitous task in the physical and life sciences. A prototypical example is the analysis of small- and wide-angle solution scattering experiments using x-rays (SAXS/WAXS) or neutrons (SANS). In such cases, it is common practice to check the quality of a fit by using Pearson's chi-square test, which ignores the order of the data. We usually plot the residuals and check visually for systematic deviations without quantifying them. To quantify these deviations, we developed test statistics based on the distributions of the lengths of the runs of the signs of the residuals. Specifically, we use the probability of run-length distributions, for which we provide analytical expressions, to rank them and to calculate their P-values. We introduce the Shannon information distribution as an elegant and versatile tool for calculating P-values. We find that these distributions follow shifted gamma distributions, such that they are summarized by three parameters only. We show for a set of six models that our test statistics are more powerful than Pearson's chi-square test and common sign-based tests. We provide an open source Python 3 implementation of our tests free of charge at https://github.com/bio-phys/hplusminus.

Keywords

Systematic deviations
SAXS
Statistical tests
WAXS
SANS
DEER
Sequential data
Ising model
Shannon information
P-value
Pearson's chi-square test
Correlated noise
Run-length distributions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.