Electric Field Induced Biomimetic Transmembrane Electron Transport using Carbon Nanotube Porins as Bipolar Electrodes

16 April 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cells modulate their homeostasis through the control of redox reactions via transmembrane electron transport systems. These are largely mediated via oxidoreductase enzymes. Their use in biology has been linked to a host of systems including reprogramming for energy requirements in cancer. Consequently, our ability to modulate membrane redox systems may give rise to opportunities to modulate underlying biology. The current work aimed to develop a wireless bipolar electrochemical approach to form on-demand electron transfer across biological membranes. To achieve this goal, we show that using membrane inserted carbon nanotube porins that can act as bipolar nanoelectrodes, we could control electron flow with externally applied electric fields across membranes. Before this work, bipolar electrochemistry has been thought to require high applied voltages not compatible with biological systems. We show that bipolar electrochemical reaction via gold reduction at the nanotubes could be modulated at low cell-friendly voltages, providing an opportunity to use bipolar electrodes to control electron flux across membranes. Our observations present a new opportunity to use bipolar electrodes to alter cell behavior via wireless control of membrane electron transfer.

Keywords

Carbon Nanotubes Coated Electrodes
electrochemistry
Electric fields
membrane electron transport
Voltage-dependent anion-selective channel
carbon nanotube porins
bipolar electrochemistry
nanoelectrochemistry

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.