Tunable Band Gaps in MUV-10(M): A Family of Photoredox-Active MOFs with Earth-Abundant Open Metal Sites

16 April 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Titanium-based metal—organic frameworks (Ti-MOFs) attract intense research attention because they can store charges in the form of Ti3+ and they serve as photosensitizers for co-catalysts through heterogeneous photoredox reactions at the MOF-liquid interface. Both charge storage and charge transfer depend on redox potentials of the MOF and the molecular substrate, but the factors controlling these energetic aspects are not well understood. Additionally, photocatalysis involving Ti-MOFs relies on co-catalysts rather than the intrinsic Ti reactivity in part because Ti-MOFs with open metal sites are rare. Here, we report that the class of Ti-MOFs known as MUV-10 can be synthetically modified to include a range of redox-inactive ions with flexible coordination environments that control the energies of the photoactive orbitals. Lewis acidic cations installed in the MOF cluster (Cd, Sr , and Ba ) or introduced to the pores (H, Li, Na, K) tune the electronic structure and band gaps of the MOFs. Through use of optical redox indicators, we report the first direct measurement of the Fermi levels (redox potentials) of photoexcited MOFs in situ. Taken together, these results explain the ability of Ti-MOFs to store charges and provide design principles for achieving heterogeneous photoredox chemistry with electrostatic control.

Keywords

photoredox
earth abundant metals
band gaps
open metal sites

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.