Exponential Amplification Using Photoredox Autocatalysis

23 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Exponential molecular amplification such as the polymerase chain reaction is a powerful tool that allows ultrasensitive biodetection. Here we report a new exponential amplification strategy based on photoredox autocatalysis, where eosin Y, a photocatalyst, amplifies itself by activating a non-fluorescent eosin Y derivative (EYH2) under green light. The deactivated photocatalyst is stable and rapidly activated under low intensity light, making the eosin Y amplification suitable for resource-limited settings. Through steady-state kinetic studies and reaction modeling, we found that EYH2 is either oxidized to eosin Y via one-electron oxidation by triplet eosin Y and subsequent 1e─/H+ transfer, or activated by singlet oxygen with the risk of degradation. By reducing the rate of the EYH2 degradation, we successfully improved EYH2- to-eosin Y recovery, achieving efficient autocatalytic eosin Y amplification. Additionally, to demonstrate its flexibility in output signals, we coupled the eosin Y amplification with photo-induced chromogenic polymerization, enabling sensitive visual detection of analytes. Finally, we applied the exponential amplification methods in developing bioassays for detection of biomarkers including SARS-CoV-2 nucleocapsid protein, an antigen used in the diagnosis of COVID-19

Keywords

photoredox
autocatalysis
photo-oxidation
eosin Y
xanthene derivatives
exponential amplification
biosensing
covid-19
antigen
biodetection
signal amplification chemistry

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.