Thermodynamic vs. Kinetic Control Enables Lewis Acid-Induced Enantioselectivity Reversal Relying on the Same Chiral Source

18 June 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Enantiodivergence is an important concept in asymmetric catalysis that enables access to both enantiomers of a product relying on the same chiral source. This strategy is particularly appealing as an alternate approach when only one enantiomer of the required chiral ligand is readily accessible but both enantiomers of the product are desired. Despite their potential significance, general catalytic methods to induce reversal in enantioselectivity remain underdeveloped. Herein we report our studies focused on elucidating the origin of enantioselectivity reversal in Lewis acid-catalyzed Michael additions relying on the same enantiomer of ligand as the chiral source. Our results provide a detailed mechanistic understanding of this transformation based on experimental and computational investigations which reveal the important interplay between kinetics and thermodynamics responsible for the observed enantiodivergence.


Enantioselectivity Reversl
Same Chiral Source


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.