Autonomous Capillary Microfluidic Devices with Constant Flow Rate and Temperature-Controlled Valving

21 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work, we introduce a Poly(N-isopropylacrylamide) (PNIPAm) grafted PDMS (PNIPAm-g-PDMS) capillary flow-driven microfluidic device with integrated valving function. Due to the thermo-sensitive properties of PNIPAm, the device possesses a temperature-switchable surface wettability between 20 and 36 °C. By locally integrating a heating wire, a hydrophobic valving function can thus be obtained. The device provides large operational freedom, enables single-valve control, and operates in a convenient temperature range. In addition, this device is characterized by a capillary filling rate that is constant in time. The constant flow velocities ranging from 1 µm/s to 240 µm/s can be obtained in dry PNIPAm-g-PDMS and freshly treated PNIPAm-g-PDMS devices with different channel geometry. We explained the constant flow rate with diffusive hydration of PNIPAm at the liquid front. This device thus provides both stop valving and accurate flow control functions, being potentially applied for diagnostic assay performance.


Keywords

capillary microfluidic devices
surface chemistry
Dynamic Wetting Behavior
hydrophobic stop valve
constant capillary flow rate

Supplementary materials

Title
Description
Actions
Title
SI ChemRxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.