MERMAID: An Open Source Automated Hit-to-Lead Method Based on Deep Reinforcement Learning

20 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The hit-to-lead process makes the physicochemical properties of the hit compounds that show the desired type of activity obtained in the screening assay more drug-like. Deep learning-based molecular generative models are expected to contribute to the hit-to-lead process.
The simplified molecular input line entry system (SMILES), which is a string of alphanumeric characters representing the chemical structure of a molecule, is one of the most commonly used representations of molecules, and molecular generative models based on SMILES have achieved significant success. However, in contrast to molecular graphs, during the process of generation, SMILES are not considered as valid SMILES. Further, it is quite difficult to generate molecules starting from a certain molecule, thus making it difficult to apply SMILES to the hit-to-lead process.In this study, we have developed a SMILES-based generative model that can be generated starting from a certain compound. This method generates partial SMILES and inserts it into the original SMILES using Monte Carlo Tree Search and a Recurrent Neural Network.We validated our method using a molecule dataset obtained from the ZINC database and successfully generated molecules that were both well optimized for the objectives of the quantitative estimate of drug-likeness (QED) and penalized octanol-water partition coefficient (PLogP) optimization.
The source code is available at https: //github.com/sekijima-lab/mermaid.

Keywords

Deep Reinforcement Learning
hit-to-lead chemistry
molecular generative model

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.