Snapshots of Ce70 Toroid Assembly from Solids and Solution

19 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Crystallization at the solid-liquid interface is difficult to spectroscopically observe and therefore challenging to understand and ultimately control at the molecular level. The Ce70-torroid formulated [CeIV70(OH)36(O)64(SO4)60(H2O)10] 4- , part of a larger emerging family of MIV70- materials (M=Zr, U, Ce), presents such an opportunity. We have elucidated assembly mechanisms by X-ray scattering (small-angle scattering and total scattering) of solutions and solids, as well as crystallizing and identifying fragments of Ce70 by single-crystal X-ray diffraction. Fragments show evidence for templated growth (Ce5, [Ce5(O)3(SO4)12] 10- ) and modular assembly from hexamer (Ce6) building units (Ce13, [Ce13(OH)6(O)12(SO4)14(Η2Ο)14] 6- and Ce62, [Ce62(OH)30(O)58(SO4)58] 14- ). Ce62, an almost complete ring, precipitates instantaneously in the presence of ammonium cations as two torqued arcs that interlock by hydrogen boding through NH4 +, which can also be replaced by other cations, demonstrated with CeIII. Room temperature rapid assembly of both Ce70 and Ce62, respectively, by addition of Li+ and NH4 +, along with ion?exchange and redox behavior, invite exploitation of this emerging material family in environmental and energy applications.

Keywords

cerium
clusters
SAXS experiments
X-ray scattering
assembly pathways

Supplementary materials

Title
Description
Actions
Title
supplemental Cerium torroid assembly
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.