Foldamer-Based Ultrapermeable and Highly Selective Artificial Water Channels that Exclude Protons

09 April 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


The outstanding capacity of aquaporins (AQPs) for mediating highly selective superfast water transport1-7 has inspired recent development of supramolecular monovalent ion-excluding artificial water channels (AWCs). AWC-based bioinspired membranes are proposed for desalination, water purification, and other separations applications8-18. While some recent progress has been made in synthesizing AWCs that approach the water permeability and ion selectivity of AQPs, a hallmark feature of AQPs – high water transport while excluding protons has not been reproduced. We report on a class of biomimetic, helically folded pore-forming polymeric foldamers, that can serve as long sought-after highly selective ultrafast water-conducting channels exceeding those of AQPs (1.1 × 1010 H2O molecules/s for AQP17), with high water over monovalent ion transport selectivity (~108 water molecules over Cl- ion) conferred by the modularly tunable hydrophobicity of the interior pore surface. The best-performing AWC reported here delivers water transport at an exceptionally high rate, 2.5 times that of AQP1, while concurrently rejecting salts (NaCl and KCl) and even protons.


foldamer systems

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.