Prediction and Optimization of Ion Transport Characteristics in Nanoparticle-Based Electrolytes Using Convolutional Neural Networks

15 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We develop a convolutional neural network (CNN) model to predict the diffusivity of cations in nanoparticle-based electrolytes, and use it to identify the characteristics of morphologies which exhibit optimal transport properties. The ground truth data is obtained from kinetic Monte Carlo (kMC) simulations of cation transport parameterized using a multiscale modeling strategy. We implement deep learning approaches to quantitatively link the diffusivity of cations to the spatial arrangement of the nanoparticles. We then integrate the trained CNN model with a topology optimization algorithm for accelerated discovery of nanoparticle morphologies that exhibit optimal cation diffusivities at a specified nanoparticle loading, and we investigate the ability of the CNN model to quantitatively account for the influence of interparticle spatial correlations on cation diffusivity. Finally, using data-driven approaches, we explore how simple descriptors of nanoparticle morphology correlate with cation diffusivity, thus providing a physical rationale for the observed optimal microstructures. The results of this study highlight the capability of CNNs to serve as surrogate models for structure--property relationships in composites with monodisperse spherical particles, which can in turn be used with inverse methods to discover morphologies that produce optimal target properties.

Keywords

Nanoparticles, Electrolytes, Colloidal systems, Material properties, Ion transport, Machine Learning, Convolutional Neural Networks, Principal Component Analysis, Topology optimization

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.