On the Mechanism of Electrochemical Generation and Decomposition of Phthalimide N-oxyl (PINO)

15 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Phthalimide N-oxyl (PINO) is a potent hydrogen atom transfer (HAT) catalyst that can be generated electrochemically from N-hydroxyphthalimide (NHPI). However, catalyst decomposition has limited its application. This paper details mechanistic studies of the generation and decomposition of PINO under electrochemical conditions. Voltammetric data, observations from bulk electrolysis, and computational studies suggest two primary aspects. First, base-promoted formation of PINO from NHPI occurs via multiple-site concerted proton-electron transfer (MS-CPET). Second, PINO decomposition occurs by at least two second-order paths, one of which is greatly enhanced by base. Optimal catalytic efficiency in PINO-catalyzed oxidations occurs in the presence of bases whose corresponding conjugate acids have pKas in the range of 12-15, which strike a balance between promoting PINO formation and minimizing its decay.




Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.