Uncertainty-Informed Deep Transfer Learning of PFAS Toxicity

15 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this article, we present our recent study on computational methodology for predicting the toxicity of PFAS known as “forever chemicals” based on chemical structures through evaluation of multiple machine learning methods. To address the scarcity of PFAS toxicity data, a deep “transfer learning” method has been investigated by leveraging toxicity information over the entire organic chemical domain and an uncertainty-informed workflow by incorporating SelectiveNet architecture, which can support future guidance of high throughput screening with knowledge of chemical structures, has been developed.

Keywords

PFAS toxicity
Deep Transfer Learning
Uncertainty Analysis
prediction algorithm
High throughput screening

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.