How to Manipulate Through-Space Conjugation and Clusterolumi-nescence of Simple AIEgens with Isolated Phenyl Rings?

13 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Apart from the traditional through-bond conjugation (TBC), through-space conjugation (TSC) is gradually proved as another important interaction in photophysical processes, especially for the recent observation of clusteroluminescence from nonconjugated molecules. Herein, simple and nonconjugated triphenylmethane (TPM) and its derivatives with electron-donating and electron-withdrawing groups were synthesized, and their photophysical properties were systematically studied. TPM was characterized with visible clusteroluminescence due to the intramolecular TSC. Experimental and theoretical results showed that the introduction of electron-donating groups into TPM could red-shift the wavelength and increase the efficiency of clusteroluminescence simultaneously, due to the increased electronic density and stabilization of TSC. However, TPM derivatives with electron-withdrawing groups showed inefficient or even quenched clusteroluminescence caused by the vigorous excited-state intramolecular motion and intermolecular photoinduced electron transfer process. This work provides a reliable strategy to manipulate TSC and clusteroluminescence.


Through-Space Conjugation
AIE characteristics

Supplementary materials

Supporting Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.