RedDB, a Computational Database of Electroactive Molecules for Aqueous Redox Flow Batteries

12 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


An increasing number of electroactive compounds have recently been explored for their use in high-performance redox flow batteries for grid-scale energy storage. Given the vast and highly diverse chemical space of the candidate compounds, it is alluring to access their physicochemical properties in a speedy way. High-throughput virtual screening approaches, which use powerful combinatorial techniques for systematic enumerations of large virtual chemical libraries and respective property evaluations, are indispensable tools for an agile exploration of the designated chemical space. Herein, RedDB: a computational database that contains 31,677 molecules from two prominent classes of organic electroactive compounds, quinones and aza-aromatics, has been presented. RedDB incorporates miscellaneous physicochemical property information of the compounds that can potentially be employed as battery performance descriptors. RedDB’s development steps, including: i)chemical library generation, ii) molecular property prediction based on quantum chemical calculations, iii) aqueous solubility prediction using machine learning, and iv) data processing and database creation, have been described.


redox flow battery
computational database
electroactive molecules
density functional theory
Molecular Databases

Supplementary materials

REDDB supp info


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.