Abstract
Enantioselective protonation is conceptually one of the most attractive methods to generate an α-chiral center. However, enantioselective protonation presents major challenges, especially in water as a solvent. Herein, we report an artificial enzyme catalyzed tandem Michael addition and enantioselective protonation reaction of α-substituted acroleins with 2-acyl imidazole derivatives in water. The artificial enzyme uses a synergistic combination of two abiological catalytic sites: a genetically encoded non-canonical p-aminophenylalanine residue and a Lewis acid Cu(II) complex. The exquisite stereochemical control achieved in the protonation of the transient enamine intermediate generated by conjugate addition of the Michael donor is illustrated by the >20:1 dr and up to >99% ee obtained for the products. These results illustrate the potential of exploiting synergistic catalysis in artificial enzymes for challenging reactions.