Synergistic Catalysis of Tandem Michael Addition/Enantioselective Protonation Reactions by an Artificial Enzyme

09 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Enantioselective protonation is conceptually one of the most attractive methods to generate an α-chiral center. However, enantioselective protonation presents major challenges, especially in water as a solvent. Herein, we report an artificial enzyme catalyzed tandem Michael addition and enantioselective protonation reaction of α-substituted acroleins with 2-acyl imidazole derivatives in water. The artificial enzyme uses a synergistic combination of two abiological catalytic sites: a genetically encoded non-canonical p-aminophenylalanine residue and a Lewis acid Cu(II) complex. The exquisite stereochemical control achieved in the protonation of the transient enamine intermediate generated by conjugate addition of the Michael donor is illustrated by the >20:1 dr and up to >99% ee obtained for the products. These results illustrate the potential of exploiting synergistic catalysis in artificial enzymes for challenging reactions.

Keywords

Artificial Enzymes
Enantioselective Protonation
Synergistic Catalysis
non-canonical amino acids
Lewis acid catalysis

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.