Predicting Critical Micelle Concentrations for Surfactants using Graph Convolutional Neural Networks

08 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Surfactants are amphiphilic molecules that are widely used in consumer products, industrial processes, and biological applications. A critical property of a surfactant is the critical micelle concentration (CMC), which is the concentration at which surfactant molecules undergo cooperative self-assembly in solution. Notably, the primary method to obtain CMCs experimentally—tensiometry—is laborious and expensive. In this work, we show that graph convolutional neural networks (GCNs) can predict CMCs directly from the surfactant molecular structure. Specifically, we developed a GCN architecture that encodes the surfactant structure in the form of a molecular graph and trained it using experimental CMC data. We found that the GCN can predict CMCs with higher accuracy than previously proposed methods and that it can generalize to anionic, cationic, zwitterionic, and nonionic surfactants. Molecular saliency maps revealed how atom types and surfactant molecular substructures contribute to CMCs and found this to be in agreement with physical rules that correlate constitutional and topological information to CMCs. Following such rules, we proposed a small set of new surfactants for which experimental CMCs are not available; for these molecules, CMCs predicted with our GCN exhibited similar trends to those obtained from molecular simulations. These results provide evidence that GCNs can enable high-throughput screening of surfactants with desired self-assembly characteristics.


Graph Neural Networks
Critical Micelle Concentration
machine Learning Methods Enable Predictive Modeling

Supplementary materials

CMCpaper SI submitted


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.