Helical Electronic Transitions of Spiroconjugated Molecules

28 January 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The two perpendicularly oriented π-systems of allene mix into helical molecular orbitals (MOs) when the symmetry of the molecule is reduced. However, the π-π transitions of allenes are linear combinations of two excitations that always consist of both helicities; consequently, the electronic transitions are not helical. Here, we examine the electronic structure of spiroconjugated molecules, which have the same parent symmetry as allene but with different relative orientation of the two π-systems. We show how the π-mixing in spiropentadiene is analogous to the helical π-mixing in allene. However, in spiroconjugated systems only half the π-MOs become helical. Due to this difference, the π-π transitions in substituted spiropentadiene come in near-degenerate pairs where the helicity is symmetry protected, and consequently there is no significant mixing between excitations involving MOs of opposite helicity. This inherent helicity of the π-π* transitions is verified by computation of the change of electron density. These transitions have big rotatory strengths where the sign correlates with the helicity of the transition. The electronic helicity of spiroconjugated molecules thus manifests itself in observable electronic and optical properties.

Keywords

Helical molecular orbitals
Spiroconjugation
group theory
Electrohelicity
Optical Activity
Chiroptical Response

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions
Title
xyz files
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.