Extensive Evaluation of Force Fields for G-Quadruplexes

05 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


G-Quadruplexes (GQs), folded by guanine-rich nucleic acid sequences, involve in gene expression processes and closely associated with the formation of tumors. So far, GQ has drawn widespread attention for its notable application of serving as potential anti-cancer target. Recently, theoretical studies for GQs have achieved significant progress, most of which are inseparable from molecular dynamics (MD) simulation. As a necessary tool to explore dynamics behavior of molecules, MD simulations strictly depend on force field parameters, which is a sticking point to obtain accurate results. Currently, many force fields for nucleic acids have been developed, but none of them have been accepted widely for GQs. In this paper, we selected five popular force fields, which are parmbsc0, parmbsc1, OL15, Drude2017 and AMOEBANUC17, and conducted explicit-solvent MD simulations on two DNA GQs respectively. We evaluated these force fields from many aspects in detail. Meanwhile, we compared conformational energy using quantum chemistry calculations. With the comprehensive evaluation, Drude2017 achieved better description for GQs, which we suggest that using Drude2017 force field should be taken into account first when investigating GQs by MD simulation.


Force field
Molecular dynamics simulation
Metal ion


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.