In Search of the Active Sites for the Selective Catalytic Reduction on Tungsten-Doped Vanadia Monolayer Catalysts supported by TiO2

05 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Tungsten-doped vanadia-based catalysts supported on anatase TiO2 are used to reduce hazardous NO emissions through the selective catalytic reduction of ammonia, but their exact atomistic structure is still largely unknown. In this computational study, the atomistic structure of mixed tungsta-vanadia monolayers on TiO2 support under typical operating conditions has been addressed by periodic density functional theory calculations. The chemical environment has been taken into account in a grand-canonical approach. We evaluate the stable catalyst structures as a function of the oxygen chemical potential and vanadium and tungsten concentrations. Thus we determine structural motifs of tungsta-vanadia/TiO2 catalysts that are stable under operating conditions. Furthermore, we identify active sites that promise high catalytic activity for the selective catalytic reduction by ammonia. Our calculations reveal the critical role of the stoichiometry of the tungsta-vanadia layers with respect to their catalytic activity in the selective catalytic reduction.

Keywords

Vanadium-based catalyst
density functional theory
Selective catalytic reduction
Stoichiometry
ammonia
chemical potential

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.