Organometallic Chemistry

Low-Valent Tungsten Redox Catalysis Enables Controlled Isomerization and Carbonylative Functionalization of Alkenes

Authors

Abstract

Tungsten catalysis has played an instrumental role in the history of organometallic chemistry, with electrophilic, fully oxidized W(VI) catalysts featuring prominently in olefin polymerization and metathesis reactions. Here, we report that the simple W(0) precatalyst, W(CO)6, catalyzes the isomerization and hydrocarbonylation of alkenes via a W(0)/W(II) redox couple. The 6- to 7-coordinate geometry changes associated with this redox process are key in allowing isomerization to take place over multiple positions and stop at a defined unactivated internal site that is primed for in situ functionalization. DFT studies and crystallographic characterization of multiple directing-group-bound W(II) model complexes illuminate potential intermediates of this redox cycle and showcase the capabilities of the 7-coordinate W(II) geometry to facilitate challenging alkene functionalizations.

Content

Thumbnail image of Manuscript.pdf

Supplementary material

Thumbnail image of Supporting Info.pdf
Supporting Info
Thumbnail image of 2u.txt
2u
Thumbnail image of W-2.txt
W-2
Thumbnail image of W-3.txt
W-3
Thumbnail image of W-3'.txt
W-3'