Magnetoelectric Coupling on the Fused Azulene Oligomers

01 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The global magnetic phase diagram for fused azulene oligomers is obtained by using a fermionic Hubbard Hamiltonian, a intermediate model between the molecular (Pariser-Parr-Pople empiric Hamiltonian) and spin-1/2 antiferromagnetic Heisenberg approaches. As a function of the on-site coulomb repulsion and the oligomer size we show that fused azulene transitions from a singlet (S = 0) to a higher-spin (S = 1, 2, 3) ground state. Near the quantum magnetic phase transition the electric dipole moment, present on fused azulene molecules, couples with the magnetic moment leading to a divergent magnetoelectric susceptibility at the boundary lines of the magnetic phase diagram. These spontaneous electric and magnetic polarizations, together with the magnetoelectric coupling between them, indicate that fuzed azulene molecules are potentially strong candidates for purely organic multiferroic materials.

Keywords

magnetoelectric coupling
fused azulene
Multiferroic Materials
oligo-acene
density matrix renormalization group

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.