Nonlinear Photocarrier Dynamics and the Role of Shallow Traps in Mixed-Halide Mixed-Cation Hybrid Perovskites

01 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We examine the role of surface passivation on carrier trapping and nonlinear recombination dynamics in hybrid metal-halide perovskites by means of excitation correlation photoluminescence (ECPL) spectroscopy. We find that carrier trapping occurs on subnanosecond timescales in both control (unpassivated) and passivated samples, which is consistent within a shallow-trap model. However, the impact of passivation has a direct effect on both shallow and deep traps. Our results reveal that the effect of passivation of deep traps is responsible for the increase of the carrier lifetimes, while the passivation of shallow traps reduces the excitation density required for shallow-trap saturation. Our work demonstrates how ECPL provides details about the passivation of shallow traps beyond those available via conventional time-resolved photoluminescence techniques.

Keywords

metal halide perovskite materials
photoluminescence emission
ultrafast broadband photoluminescence

Supplementary materials

Title
Description
Actions
Title
valverde-chavez ecpl si
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.