Morphology Control in 2D Carbon Nitrides: Impact of Particle Size on Optoelectronic Properties and Photocatalysis

01 April 2021, Version 1


The carbon nitride poly(heptazine imide), PHI, has recently emerged as a powerful 2D carbon nitride photocatalyst with intriguing charge storing ability. Yet, insights into how morphology, particle size and defects influence its photophysical properties are virtually absent. Here, ultrasonication is used to systematically tune the particle size as well as concentration of surface functional groups and study their impact. Enhanced photocatalytic activity correlates with an optimal amount of those defects that create shallow trap states in the optical band gap, promoting charge percolation, as evidenced by time-resolved photoluminescence spectroscopy, charge transport studies, and quantum-chemical calculations. Excessive amounts of terminal defects can act as recombination centers and hence, decrease the photocatalytic activity for hydrogen evolution. Re-agglomeration of small particles can, however, partially restore the photocatalytic activity. The type and amount of trap states at the surface can also influence the deposition of the co-catalyst Pt, which is used in hydrogen evolution experiments. Optimized conditions entail improved Pt distribution, as well as an enhanced wettability and colloidal stability. A description of the interplay between these effects is provided to obtain a holistic picture of the size–property–activity relationship in nanoparticulate PHI-type carbon nitrides that can likely be generalized to related photocatalytic systems.


carbon nitrides
poly(heptazine imide)
trap states
defect tuning
particle size

Supplementary materials

Morphology Control in 2D Carbon Nitrides 2021 suppl


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.