Electrochemistry in an Optical Fiber Microcavity - Optical Monitoring of Electrochemical Processes in Picoliter Volumes

29 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


In this work, we demonstrate a novel method for multi-domain analysis of properties of analytes in volumes as small as picoliter, combining electrochemistry and optical measurements. A microcavity in-line Mach-Zehnder interferometer (µIMZI) obtained in a standard single-mode optical fiber using femtosecond laser micromachining was able to accommodate a microelectrode and optically monitor electrochemical processes inside the fiber. The interferometer shows exceptional sensitivity to changes in optical properties of analytes in the microcavity. We show that the optical readout follows the electrochemical reactions. Here, the redox probe (ferrocenedimethanol) undergoing reactions of oxidation and reduction changes the optical properties of the analyte (refractive index and absorbance) that are monitored by the µIMZI. Measurements have been supported by numerical analysis of both optical and electrochemical phenomena. On top of a capability of the approach to perform analysis in microscale, the difference between oxidized and reduced forms in the near-infrared can be clearly measured using the µIMZI, which is hardly possible using other optical techniques. The proposed multi-domain concept is a promising approach for highly reliable and ultrasensitive chemo- and biosensing.


optical fiber sensor
Mach-Zehnder interferometer
Laser Micromachining

Supplementary materials

SI - Electrochemistry in an optical fiber microcavity


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.