Multi-fidelity Sequential Learning for Accelerated Materials Discovery

29 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We introduce a new agent-based framework for materials discovery that combines multi-fidelity modeling and sequential learning to lower the number of expensive data acquisitions while maximizing discovery. We demonstrate the framework's capability by simulating a materials discovery campaign using experimental and DFT band gap data. Using these simulations, we determine how different machine learning models and acquisition strategies influence the overall rate of discovery of materials per experiment. The framework demonstrates that including lower fidelity (DFT) data, whether as a-priori knowledge or using in-tandem acquisition, increases the discovery rate of materials suitable for solar photoabsorption. We also show that the performance of a given agent depends on data size, model selection, and acquisition strategy. As such, our framework provides a tool that enables materials scientists to test various acquisition and model hyperparameters to maximize the discovery rate of their own multi-fidelity sequential learning campaigns for materials discovery.

Keywords

materials
machine learning
density functional theory
sequential learning

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.