Multi and Single-Reference Methods for the Analysis of Multi-State Peroxidation of Enolates

26 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In spite of being spin-forbidden, some enzymes are capable of catalyzing the incorporation of O2 (3Σg) to
organic substrates without needing any cofactor. It has been established that the process followed by these
enzymes starts with the deprotonation of the substrate forming an enolate. In a second stage, the peroxidation
of the enolate formation occurs, a process in which the system changes its spin multiplicity from a triplet state
to a singlet state. In this article, we study the addition of O2 to enolates using state-of-the-art multi-reference
and single-reference methods. Our results confirm that intersystem crossing is promoted by stabilization of
the singlet state along the reaction path. When multi-reference methods are used, large active spaces are
required, and in this situation, Semistochastic Heat-Bath Configuration Interaction (SHCI) emerges as a
powerful method to study these multi-configurational systems and is in good agreement with LCCSD(T)
when the system is well-represented by a single-configuration.

Keywords

Multi-reference method
Enolates
Peroxidaton
CCSD(T)
SHCI
Cofactorless
MEP

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.