Operando SAXS Study of a Pt/C Fuel Cell Catalyst with an X-ray Laboratory Source

26 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Small angle X-ray scattering (SAXS) is a powerful technique to investigate the degradation of catalyst materials. Ideally such investigations are performed operando, i.e., during a catalytic reaction. An example of operando measurements is to observe the degradation of fuel cell catalysts during an accelerated stress test (AST). Fuel cell catalysts consist of Pt or Pt alloy nanoparticles (NPs) supported on a high surface area carbon. A key challenge of operando SAXS measurements is a proper background subtraction of the carbon support to extract the information of the size distribution of the Pt NPs as a function of the AST treatment. Typically, such operando studies require the use of synchrotron facilities. The background measurement can then be performed by anomalous SAXS (aSAXS) or in a grazing incidence con-figuration. In this work we present a proof-of-concept study demonstrating the use of a laboratory X-ray diffractometer for operando SAXS. Data acquisition of operando SAXS with a laboratory X-ray diffractometer is desirable due to the general challenging and limited accessibility of synchrotron facilities. They become even more crucial under the ongoing and foreseen restrictions related to the COVID-19 pandemic. Although, it is not the aim to completely replace synchrotron-based studies, it is shown that the background subtraction can be achieved by a simple experimental consideration in the setup that can ultimately facilitate operando SAXS measurements at a synchrotron facility.


operando spectroscopy
Small Angle X-ray Scattering
fuel cell catalyst

Supplementary materials

Schröder, Quinson et al SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.