Inhibition Mechanism of SARS-CoV-2 Main Protease with Ketone-Based Inhibitors Unveiled by Multiscale Simulations

26 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


We present the results of combined classical and QM/MM simulations for the inhibition of SARS-CoV-2 3CL protease by a recently proposed ketone-based covalent inhibitor, PF-00835231, that is under clinical trial. In the noncovalent complex formed after binding into the active site the carbonyl group of this inhibitor is accommodated into the oxyanion hole formed by the NH main chain groups of residues 143 to 145. The P1-P3 groups of the inhibitor establish similar interaction with the enzyme to those of equivalent groups in the natural peptide substrate, while the hydroxymethyl moiety of the inhibitor partly mimics the interactions established by the P1’ group of the peptide in the active site. Regarding the formation of the covalent complex, the reaction is initiated after the proton transfer from Cys145 to His41. Formation of the covalent hemithioacetal complex takes place by means of the nucleophilic attack of the Sg atom of Cys145 on the electron deficient carbonyl carbon atom and a proton transfer from the catalytic His41 to the carbonyl oxygen atom mediated by the hydroxyl group. Our findings can be used as a guide to propose modifications of the inhibitor in order to increase its affinity by the 3CL protease.


3CL protease
Minimum Free Energy Path
ketone-based inhibitor

Supplementary materials

SI ket cx


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.