Virtual Homonuclear Decoupling in Direct Detection NMR Experiments using Deep Neural Networks

24 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nuclear magnetic resonance (NMR) experiments are frequently complicated by the presence of homonuclear scalar couplings. For the growing body of biomolecular 13C-detected methods, one-bond 13C-13C couplings significantly reduce sensitivity and resolution. The solution to this problem has typically been to record in-phase and anti-phase (IPAP) or spin state selective excitation (S3E) spectra and take linear combinations to yield singlet resolved resonances. This however, results in a doubling of the effective phase cycle and requires additional delays and pulses to create the necessary magnetisation. Here, we propose an alternative method of virtual decoupling using deep neural networks. This methodology requires only the in-phase spectra, halving the experimental time and, by decoupling signals, gives a significant boost in resolution while concomitantly doubling sensitivity relative to the in-phase spectrum. We successfully apply this methodology to virtually decouple in-phase CON (13CO-15N) protein NMR spectra and 13C-13C correlation spectra of protein side chains.

Keywords

Nuclear magnetic resonance (NMR)
Deep Learning Applications
Virtual Decoupling
Direct Detection

Supplementary materials

Title
Description
Actions
Title
directDetect SI chemrxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.