Abstract
Chemical compounds can be identified through a graphical depiction, a suitable string representation, or a chemical name. A universally accepted naming scheme for chemistry was established by the International Union of Pure and Applied Chemistry (IUPAC) based on a set of rules. Due to the complexity of this rule set a correct chemical name assignment remains challenging for human beings and there are only a few rule-based cheminformatics toolkits available that support this task in an automated manner.
Here we present STOUT (SMILES-TO-IUPAC-name translator), a deep-learning neural machine translation approach to generate the IUPAC name for a given molecule from its SMILES string as well as the reverse translation, i.e., predicting the SMILES string from the IUPAC name. The open system demonstrates a test accuracy of about 90% correct predictions, also incorrect predictions show a remarkable similarity between true and predicted compounds.