Breaking the Upper Bound of Siloxane Uptake: Metal-Organic Frameworks as an Adsorbent Platform

19 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Biogas, regarded as a promising renewable energy source, still needs to be upgraded. This calls for the removal of the most prominent contaminants, among others the octamethylcyclotetrasiloxane (D4) molecule. Herein, high throughput computational screening in tandem with synthesis and adsorption testing revealed the hydrophobic Zr-MOF PCN-777 as an optimal D4 adsorbent with record gravimetric (1.8 g/g) and volumetric (0.49 g/cm3) uptakes, alongside with a reversible and fast adsorption/desorption process, good cyclability and easy regeneration. This MOF was demonstrated to encompass an ideal combination of mesoporous cages and chemical functionality to enable an optimal packing of the siloxane molecules and their efficient removal while maintaining the process highly reversible thanks to moderately high host/guest interactions. This work highlights the efficacy of an integrated workflow for accelerating adsorbent selection for a desired application, spanning the entire pipeline from method validation to computational screening, synthesis and adsorption testing towards the identification of the optimal adsorbents.

Keywords

siloxane adsorption
metal-organic frameworks (MOFs)
high thoughput screening

Supplementary materials

Title
Description
Actions
Title
manuscript-SI
Description
Actions
Title
raw data
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.