Poly(catecholamine) coated CsPbBr3 perovskite microlasers: lasing in water and biofunctionalization

05 March 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Lead halide perovskites (LHP) microcrystals are promising materials for various optoelectronic applications. Surface coating on particles is a common strategy to improve their functionality and environmental stability, but LHP is not amenable to most coating chemistries because of its intrinsic weakness against polar solvents. Here, we describe a novel method of synthesizing LHP microcrystals in a super-saturated polar solvent using sonochemistry and applying various functional coatings on individual microcrystals in situ. We synthesize cesium lead bromine perovskite (CsPbBr3) microparticles capped with organic poly-norepinephrine (pNE) layers. The catechol group of pNE coordinates to bromine-deficient lead atoms, forming a defect-passivating and diffusion-blocking shell. The pNE layer enhances the stability of CsPbBr3 in water by 2,000-folds, enabling bright luminescence and lasing from single microcrystals in water. Furthermore, the pNE shell permits biofunctionalization with proteins, small molecules, and lipid bilayers. Luminescence from CsPbBr3 microcrystals is sustained in water over 1 hour and observed in live cells. The functionalization method may enable new applications of LHP particles in water-rich environments.

Keywords

biofunctionalization strategy
photonic applications
Optical Materials
microlaser probes

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.